Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37235455

RESUMO

Nucleoside analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we designed to explore the synthesis and spectral characterization of 5'-O-(myristoyl)thymidine esters (2-6) for in vitro antimicrobial, molecular docking, molecular dynamics, SAR, and POM analyses. An unimolar myristoylation of thymidine under controlled conditions furnished the 5'-O-(myristoyl)thymidine and it was further converted into four 3'-O-(acyl)-5'-O-(myristoyl)thymidine analogs. The chemical structures of the synthesized analogs were ascertained by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests along with PASS, prediction indicated expectant antibacterial functionality of these thymidine esters compared to the antifungal activities. In support of this observation, their molecular docking studies have been performed against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51) and significant binding affinities and non-bonding interactions were observed. The stability of the protein-ligand complexes was monitored by a 100 ns MD simulation and found the stable conformation and binding mode in a stimulating environment of thymidine esters. Pharmacokinetic predictions were studied to assess their ADMET properties and showed promising results in silico. SAR investigation indicated that acyl chains, lauroyl (C-12) and myristoyl (C-14), combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. The POM analyses provide the structural features responsible for their combined antibacterial/antifungal activity and provide guidelines for further modifications, with the aim of improving each activity and selectivity of designed drugs targeting potentially drug-resistant microorganisms. It also opens avenues for the development of newer antimicrobial agents targeting bacterial and fungal pathogens.


A novel series of 5´-O-(myristoyl)thymidine derivatives were synthesized and characterized by FTIR, 1H-NMR, 2D-NMR, 13C-NMR, mass and physicochemical studies.In vitro antimicrobial susceptibility revealed that alkyl chain and aromatic substituents can improve the antimicrobial efficacy of the thymidine structure which was also supported by PASS enumeration.Molecular docking study against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51) exhibited a promising binding score and interaction in the catalytic active site.A 100ns MD simulation revealed the stable conformation and binding pattern in a stimulating environment of thymidine derivatives.ADMET analysis revealed that most of the compounds are non-toxic and most of them have an inhibitory property to the CYP1A2 and CYP3A4In silico and POM analyses provide substantial ideas about the structural features responsible for their combined antibacterial/antifungal agents and provide guidelines for further modifications.


Assuntos
Anti-Infecciosos , Antifúngicos , Antifúngicos/química , Simulação de Acoplamento Molecular , Antibacterianos/química , Bactérias , Ésteres/química , Timidina/farmacologia , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
2.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985587

RESUMO

Due to the uneven distribution of glycosidase enzyme expression across bacteria and fungi, glycoside derivatives of antimicrobial compounds provide prospective and promising antimicrobial materials. Therefore, herein, we report the synthesis and characterization of six novel methyl 4,6-O-benzylidene-α-d-glucopyranoside (MBG) derivatives (2-7). The structures were ascertained using spectroscopic techniques and elemental analyses. Antimicrobial tests (zone of inhibition, MIC and MBC) were carried out to determine their ability to inhibit the growth of different Gram-positive, Gram-negative bacteria and fungi. The highest antibacterial activity was recorded with compounds 4, 5, 6 and 7. The compounds with the most significant antifungal efficacy were 4, 5, 6 and 7. Based on the prediction of activity spectra for substances (PASS), compounds 4 and 7 have promising antimicrobial capacity. Molecular docking studies focused on fungal and bacterial proteins where derivatives 3 and 6 exhibited strong binding affinities. The molecular dynamics study revealed that the complexes formed by these derivatives with the proteins L,D-transpeptidase Ykud and endoglucanase from Aspergillus niger remained stable, both over time and in physiological conditions. Structure-activity relationships, including in vitro and in silico results, revealed that the acyl chains [lauroyl-(CH3(CH2)10CO-), cinnamoyl-(C6H5CH=CHCO-)], in combination with sugar, were found to have the most potential against human and fungal pathogens. Synthetic, antimicrobial and pharmacokinetic studies revealed that MBG derivatives have good potential for antimicrobial activity, developing a therapeutic target for bacteria and fungi. Furthermore, the Petra/Osiris/Molinspiration (POM) study clearly indicated the presence of an important (O1δ-----O2δ-) antifungal pharmacophore site. This site can also be explored as a potential antiviral moiety.


Assuntos
Anti-Infecciosos , Antifúngicos , Humanos , Antifúngicos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Farmacóforo , Compostos de Benzilideno , Anti-Infecciosos/química , Relação Estrutura-Atividade , Antibacterianos/química , Bactérias , Testes de Sensibilidade Microbiana
3.
J Biomol Struct Dyn ; 41(14): 6695-6708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35968554

RESUMO

Since Schiff base derivatives have a wide range of biological activities, novel Schiff base derivatives were designed and synthesized in satisfactory yields. 1H NMR, 13C NMR, IR, mass and elemental analysis were used to provide a complete structural characterization of the new synthesized Schiff bases (3-6). The antiproliferative activity properties of compounds were tested against two human cancer cell lines including breast (MDA-MB-231) and colon (DLD-1). The compounds overall did not show high cytotoxic activity against both cancer cell lines compared to the positive control drug cisplatin. The synthesized Schiff base compounds were further screened for their in vitro antimicrobial activities against five bacterial strains (Escherichia coli (ATTC 25922), Salmonella thyphimurium (ATTC 14028), Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Bacillus cereus (ATCC 11778)) and two fungal strains (Candida albicans (ATCC 10231) and Candida glabrata (ATCC 90030)) using broth micro dilution techniques. The mode of action for the antimicrobial effect in the experimental part was explored through molecular docking. The stability of target-ligand complexes obtained from the docking were assessed through molecular dynamics simulation. The binding affinity of the compounds toward the target protein were also investigated using MMPBSA. Furthermore, electrochemical properties of some compounds was analyzed by DFT calculations. By using POM theory, it becomes more easy to control the bioactivity of drugs. Here, how the physicochemical properties play a crucial role in the orientation of their bioactivity was demonstrated.Communicated by Ramaswamy H. Sarma.

4.
PLoS One ; 17(11): e0273256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441684

RESUMO

The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is one of the optimum targets for antiviral drug design and development. The hydroxyl groups of cytidine structures were modified with different aliphatic and aromatic groups to obtain 5´-O-acyl and 2´,3´-di-O-acyl derivatives, and then, these derivatives were employed in molecular modeling, antiviral prediction, molecular docking, molecular dynamics, pharmacological and POM studies. Density functional theory (DFT) at the B3LYP/6-31G++ level analyzed biochemical behavior and molecular electrostatic potential (MESP) of the modified cytidine derivatives. The antiviral parameters of the mutated derivatives revealed promising drug properties compared with those of standard antiviral drugs. Molecular docking has determined binding affinities and interactions between the cytidine derivatives and SARS-CoV-2 RdRp. The modified derivatives strongly interacted with prime Pro620 and Lys621 residues. The binding conformation and interactions stability were investigated by 200 ns of molecular dynamics simulations and predicted the compounds to firmly dock inside the RdRp binding pocket. Interestingly, the binding residues of the derivatives were revealed in high equilibrium showing an enhanced binding affinity for the molecules. Intermolecular interactions are dominated by both Van der Waals and electrostatic energies. Finally, the pharmacokinetic characterization of the optimized inhibitors confirmed the safety of derivatives due to their improved kinetic properties. The selected cytidine derivatives can be suggested as potential inhibitors against SARS-CoV-2. The POM Theory supports the hypothesis above by confirming the existence of an antiviral (Oδ--O'δ-) pharmacophore site of Hits.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Citidina/farmacologia , Receptores de Droga , Antivirais/farmacologia , RNA Polimerase Dependente de RNA
5.
Nucleosides Nucleotides Nucleic Acids ; 41(10): 1036-1083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797068

RESUMO

Because of their superior antibacterial and pharmacokinetic capabilities, many nucleoside-based esters show potential against microorganisms, and may be used as pharmacological agents to address multidrug-resistant pathogenic problems. In this study, several aliphatic and aromatic groups were inserted to synthesize various 5'-O-decanoyluridine (2-5) and 5'-O-lauroyluridine derivatives (6-7) for antimicrobial, in silico computational, pharmacokinetic and POM (Petra/Osiris/Molinspiration). The chemical structures of the synthesized uridine derivatives were confirmed by physicochemical, elemental, and spectroscopic analyses. In vitro antimicrobial screening against five bacteria and two fungi, as well as the prediction of substance activity spectra (PASS), revealed that these uridine derivatives have promising antifungal properties when compared to the antibacterial activities. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties. Molecular docking was conducted against lanosterol 14a-demethylase CYP51A1 (3JUV) and Aspergillus flavus (1R4U) and revealed binding affinities and non-covalent interactions with the target. Then, a 150 ns molecular dynamic simulation was performed to confirm the behavior of the complex structure formed by microbial protein under in silico physiological conditions to examine its stability over time, which revealed a stable conformation and binding pattern in a stimulating environment of uridine derivatives. The acyl chain {CH3(CH2)9CO-} and {CH3(CH2)10CO-} in conjunction with sugar, was determined to have the most potent activity against bacterial and fungal pathogens in a structure-activity relationships (SAR) investigation. POM analyses were conducted with the presence of an antifungal (O δ- -- O' δ-) pharmacophore site. Overall, the present study might be useful for the development of uridine-based novel multidrug-resistant antimicrobial.


Novel uridine derivatives were designed and synthesized. The chemical structures and purity of these new uridine derivatives were confirmed by usual spectroscopic techniques.In vitro antimicrobial activity and SAR study was investigated. The incorporation of various aliphatic and aromatic groups in uridine structure significantly increased their biological activity.PASS prediction analysis indicated that the compounds were less potent as anti-carcinogenic agents (0.31 < Pa < 0.52) than as antimicrobial agents.Molecular docking analysis showed that the novel uridine derivatives 2, 5 and 6 may possess excellent effectiveness for lanosterol 14a-demethylase CYP51A1 (3JUV) and Aspergillus flavus (1R4U).The stability of the docked complex was confirmed by performing molecular dynamics along with an estimation of MMPB/GBSA binding free energy which ensured that complex of derivatives 2, 5 and 6 were reported in improved dynamics stability as revealed by their uniform RMSD and RMSF profiles.In silico ADMET calculations predicted improved pharmacokinetic properties of all uridine derivatives.The POM analysis showed the presence of an antifungal (O δ− --- O' δ−) pharmacophore site.


Assuntos
Anti-Infecciosos , Simulação de Dinâmica Molecular , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias , Lanosterol , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Nucleosídeos/farmacologia , Relação Estrutura-Atividade , Açúcares , Uridina/farmacologia
6.
J Mol Struct ; 1267: 133605, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35782312

RESUMO

The discovery and development of new potent antimicrobial and antioxidant agents is an essential lever to protect living beings against pathogenic microorganisms and free radicals. In this regard, new functionalized pyrazoles have been synthesized using a simple and accessible approach. The synthesized aminobenzoylpyrazoles 3a-h and pyrazole-sulfonamides 4a-g were obtained in good yields and were evaluated in vitro for their antimicrobial and antioxidant activities. The structures of the synthesized compounds were determined using IR, NMR, and mass spectrometry. The structure of the compound 4b was further confirmed by single crystal X-ray diffraction. The results of the in vitro screening show that the synthesized pyrazoles 3 and 4 exhibit a promising antimicrobial and antioxidant activities. Among the tested compounds, pyrazoles 3a, 3f, 4e, 4f, and 4g have exhibited remarkable antimicrobial activity against some microorganisms. In addition, compounds 3a, 3c, 3e, 4a, 4d, 4f, and 4g have shown a significant antioxidant activity in comparison with the standard butylhydroxytoluene (BHT). Hence, compounds 3a, 4f, and 4g represent interesting dual acting antimicrobial and antioxidant agents. In fact, pyrazole derivatives bearing sulfonamide moiety (4a-g) have displayed an important antimicrobial activity compared to pyrazoles 3a-h, this finding could be attributed to the synergistic effect of the pyrazole and sulfonamide pharmacophores. Furthermore, Molecular docking results revealed a good interaction of the synthesized compounds with the target proteins and provided important information about their interaction modes with the target enzyme. The results of the POM bioinformatics investigations (Petra, Osiris, Molinspiration) show that the studied heterocycles present a very good non toxicity profile, an excellent bioavailability, and pharmacokinetics. Finally, an antiviral pharmacophore (O δ-, O δ-) was evaluated in the POM investigations and deserves all our attention to be tested against Covid-19 and its Omicron and Delta mutants.

7.
Bioorg Chem ; 125: 105850, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533581

RESUMO

Nucleoside precursors and nucleoside analogs occupy an important place in the treatment of viral respiratory pathologies, especially during the current COVID-19 pandemic. From this perspective, the present study has been designed to explore and evaluate the synthesis and spectral characterisation of 5́-O-(lauroyl) thymidine analogs 2-6 with different aliphatic and aromatic groups through comprehensive in vitro antimicrobial screening, cytotoxicity assessment, physicochemical aspects, molecular docking and molecular dynamics analysis, along with pharmacokinetic prediction. A unimolar one-step lauroylation of thymidine under controlled conditions furnished the 5́-O-(lauroyl) thymidine and indicated the selectivity at C-5́ position and the development of thymidine based potential antimicrobial analogs, which were further converted into four newer 3́-O-(acyl)-5́-O-(lauroyl) thymidine analogs in reasonably good yields. The chemical structures of the newly synthesised analogs were ascertained by analysing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests against five bacteria and two fungi, along with the prediction of activity spectra for substances (PASS), indicated promising antibacterial functionality for these thymidine analogs compared to antifungal activity. In support of this observation, molecular docking experiments have been performed against the main protease of SARS-CoV-2, and significant binding affinities and non-bonding interactions were observed against the main protease (6LU7, 6Y84 and 7BQY), considering hydroxychloroquine (HCQ) as standard. Moreover, the 100 ns molecular dynamics simulation process was performed to monitor the behaviour of the complex structure formed by the main protease under in silico physiological conditions to examine its stability over time, and this revealed a stable conformation and binding pattern in a stimulating environment of thymidine analogs. Cytotoxicity determination confirmed that compounds were found less toxic. Pharmacokinetic predictions were investigated to evaluate their absorption, distribution, metabolism and toxic properties, and the combination of pharmacokinetic and drug-likeness predictions has shown promising results in silico. The POM analysis shows the presence of an antiviral (O1δ-, O2δ-) pharmacophore site. Overall, the current study should be of great help in the development of thymidine-based, novel, multiple drug-resistant antimicrobial and COVID-19 drugs.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antibacterianos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Inibidores de Proteases/química , Timidina/farmacologia , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...